libcats.org
Главная

Explicit construction of multivariate Pade approximants to an Appell function

Обложка книги Explicit construction of multivariate Pade approximants to an Appell function

Explicit construction of multivariate Pade approximants to an Appell function

, ,
Properties of Padé approximants to the Gauss hypergeometric function 2 F1 (a, b; c; z) havebeen studied in several papers and some of these properties have been generalized to severalvariables in [6]. In this paper we derive explicit formulae for the general multivariate Padéapproximants to the Appell function F1 (a, 1, 1; a + 1; x, y) = ∞ =0 (ax i y j /(i + j + a)),i,jwhere a is a positive integer. In particular, we prove that the denominator of the constructedapproximant of partial degree n in x and y is given by q(x, y) = (−1)n m+n+a F1 (−m −na, −n, −n; −m−n−a; x, y), where the integer m, which defines the degree of the numerator,satisfies mn + 1 and m + a2n. This formula generalizes the univariate explicit formfor the Padé denominator of 2 F1 (a, 1; c; z), which holds for c > a > 0 and only in half ofthe Padé table. From the explicit formulae for the general multivariate Padé approximants, wecan deduce the normality of a particular multivariate Padé table.
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.
Популярные книги за неделю:
Только что пользователи скачали эти книги: