О минимальности активного фрагмента таблицы характеров конечной группы
Белоногов В.А.
Для изучения строения конечной группы можно привлечь определенные подматрицы ее таблицы характеров, так называемые активные фрагменты группы (см. книгу автора "Представления и характеры в теории конечных групп". Свердловск: УрО АН СССР, 1990). В \S 1 доказано, что если $A$ - активный фрагмент группы $G$ и $A$ записан в блочной форме $A=(B|C)$ или $A=\begin{pmatrix}BC\end{pmatrix}$, то $B$ (и также $C$) - активный фрагмент группы $G$, если и только если $\mathrm r(A)=\mathrm r(B)+\mathrm r(C)$ ($\mathrm r(M)$ обозначает ранг матрицы $M$). Таким образом, разложимость активного фрагмента $A$ на меньшие активные фрагменты зависит только от матрицы $A$, но не от $G$. В частности, никакая матрица не может быть минимальным активным фрагментом одной группы и неминимальным активным фрагментом другой. В \S 2 показывается, как информация о разложимости активного фрагмента $A$ на меньшие активные фрагменты (полученная с помощью результатов \S 1) может быть использована для упрощения "централизаторного уравнения" $AXA^*A=A$, позволяющего получить информацию о порядках централизаторов элементов группы, связанных с $A$.
EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.