Visual Data Mining - Theory
Simeon Simoff, Michael H. Böhlen, Arturas Mazeika
The importance of visual data mining, as a strong sub-discipline of data mining, had already been recognized in the beginning of the decade. In 2005 a panel of renowned individuals met to address the shortcomings and drawbacks of the current state of visual information processing. The need for a systematic and methodological development of visual analytics was detected.This book aims at addressing this need. Through a collection of 21 contributions selected from more than 46 submissions, it offers a systematic presentation of the state of the art in the field. The volume is structured in three parts on theory and methodologies, techniques, and tools and applications.
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.